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Abstract faces. Apart from introducing the idea of meshless
subdivision, our main contributions are, firstly, a first

Point-based surface processing has developed into am@dshless geodesic subdivision operator. Secondly, we

tractive alternative to mesh-based processing technigpessent a new method for the computation of geodesic

for a number of geometric modeling applications. Byweighted averages on manifold surfaces, which are at

working with point cloud data directly, any processinghe heart of our point cloud subdivision framework.

is based on the given raw data and its underlying geome-

try rather than any arbitrary intermediate representations

and generally artificial connectivity relations. Inthispay | ntroduction

per, we introduce the notion of meshless, or point cloud,

subdivision by extending concepts from recursive meglyn: hased editing, free-form and multiresolution mod-
subdivision tq the po_lnt cloud case. We _are__prlmarl_b_(”ing and visualisation have developed into viable alter-
concerned with showing the conceptual viability of thig,ives to mesh-based processing methods [ABI30
idea and propose a first geometric meshless subdivisgBko2 pkkG03. ZPVBGO1 ZPKGO02]. With nu-
framework. By replacing the role of mesh connectivqerqs applications in medical imaging, reverse engi-
ity by intrinsic point proximity information and devis-neering, cultural heritage, geoscience, etc. acquiring
ing a meshless geodesic subdivision operator, we avgid; sets of significant density from three or higher-
the costly surface reconstruction, simplification and pgimensional manifold surfaces, it is particularly attrac-

tential remeshing preprocessing steps typically requirgth 5 pe able to work with point-sampled geometry di-
for supporting mesh-based subdivision, steps which age,

in general not directly related to the underlying object In t.he context of mesh-based surface processing, sub-

geometry. Furthermore, the maintenance of any glot&"i\llision has developed into a powerful and widely-
combinatorial data structure such as a mesh connecti\ﬂg/ed tool for the free-form design and representation
graph is not required. This property also makes our &Y smooth surfaces. These schemes use a subdivision

pro_ach relatively easily gxtensiblt_e to thg procc_essing Sberator which is recursively applied to a coarse base
point-based representations of higher-dimensional s ash. As a result, a sequence of refined meshes is ob-

*The author performed this work whilst visiting the University of@ined which quickly converges to _a_S_mOOth limit sur-
Minnesota. face. For many applications, the initial base mesh is




obtained by costly polygonisation of point-sampled gésrmal treatment of mesh subdivision, see [DL02].
ometry. Highly dense point sets thereby translate intoFollowing the notation of [DL02], surface subdivi-
excessively dense polygonal models with arbitrary cosion schemes consist of a subdivision oper&ogcur-
nectivity. This is generally followed by another costlgively applied to control netsy = N(V!,E',F') of ar-
mesh simplification step and often the need for remedfitrary topology, withl € Zg denoting the subdivision
ing (JACSD*03] and the references therein) to enfordevel,V representing a set of control verticesRA and
subdivision connectivity of the base mesh. Ease of ma-andF describing the topological relations in the form
nipulation tends to be further affected by the inhereof edges and faces respectively. That is, the iterative ap-
overhead of mesh data structure maintenance and trapéication of a subdivision scheme generates a sequence
sal.

This paper presents a first framework for meshless, or N1 =3SN.
point cloud, subdivision. That is, we propose to avoid o
the consideration of mesh connectivity graphs and iRefine the surfaceX C R® as the limit surface of a
stead to work with the given point-sampled geometgfheme given that
directly and intrinsically throughout. We undertake a
first step towards such an extension of recursive mesh
subdivision to point clouds by introducing a meshless
geodesic subdivision operator reminiscent of widelyith
used mesh subdivision operators. More specifically, we _ _
replace mesh connectivity by intrinsic proximity infordH (X,Y) = max{sup)g‘(||x—y||2,supy|2{‘(||x—y|\2}
mation and introduce meshless subdivision rules using yey xex
geodesic centroids of local intrinsic point neighboufepresenting the Euclidean Hausdorff distance between
hoods. Although some of these geometric operatiof closed subset$,Y ¢ R3. Starting with the coarse
may be approximated in an Euclidean context Whgase netN,, at each iteration, new control vertices are
working with large sampling densities, regular meshggserted and connected according to the scheme’s re-
and very local subdivision rules, working with the poiniinement rule. Control vertices are then re-positioned
sampled geometry directly and intrinsically has the begsjlowing the operator's geometric averaging rule. Both
efit of not requiring any non-geometric preprocessinge refinement and the geometric rule give the position
steps. Furthermore, an intrinsic point cloud subdivisiqf control vertices i1 in the form of weighted aver-
approach is more generally applicable in that geodegiges of topologically neighbouring verticesNp The
averaging rules can be non-local and do not vary wiglreful choice of these rules in relation to the valency
the particular type of data (mesh) representation useg the control vertex under consideration guarantees the

The focus of this paper is on highlighting the conceponvergence of the scheme to a limit surface of prov-
tual viability of meshless subdivision by putting forwar@ple continuity. Note that for the subdivision schemes
a first suitable framework. Our ideas on the theoretiG@l the literature the convergence is in each component
analysis of meshless geodesic subdivision schemes @il in the uniform norm. Convergence in the Hausdorff
be reported elsewhere. distance is not yet achieved.

Both our intrinsic point cloud simplification method Not every existing mesh subdivision operator allows
for the determination of a base point set and of#r such a simple distinction between a topological re-
geodesic centroid technique are based upon the intririi@ment and a geometric averaging rule applicable at
distance mapping algorithm for point clouds presentedl points. However, those that do allow for this kind of
in [MS03]. Following a brief overview of related workdistinction, include the most widely-used schemes. For
in Section 2, we therefore summarise the main aspegi&mple, Loop [Loo87] subdivision for triangular con-
of this technique in Section 3. Section 4 presents tf8| nets may be cast in this form. In the case of Loop
various elements of our intrinsic meshless subdivisigabdivision, the refinement rule consists of the insertion
framework. Section 5 gives experimental results. In tig a new point at the midpoint of every edge, while the
concluding Section 6, we briefly remark on our idea fefeometric rule, applicable at all points in the new mesh,
the theoretical analysis of intrinsic meshless subdivisigmoothes the locations of the points by weighted averag-
schemes. ing of their topological neighbours in the refined mesh.

In this paper, we propose to replace this use of mesh
connectivity by intrinsic proximity information and for-
2 Related work mulate meshless refinement and geometric averaging
rules in the form of weighted geodesic centroids of local
We start with providing a brief summary of the ideaseighbourhoods. As a result, we obtain a meshless sub-
underpinning mesh-based subdivision of surfacé’®in division scheme reminiscent of mesh-based subdivision
The overview is motivational in nature, for a thorougbperators.

im dy (V' X) =0,



surfaceM in m> 3 dimensions. Define theoffsetQp
as the union of Euclidean balls with radiusentred at
pointsp; € P

b:=JB(pi,r) = {xeR™:d(pi,x) <r},
i—1

whered(.,.) denotes the Euclidean distance function
(Figure 1). To approximate the weighted intrinsic dis-
tance map originating from a source poing M on M,

. L . . émoli and Sapiro [MS03] suggest computing the Eu-
Figure 1: Intrinsic distance mapping using Fast MarcE/lemo : o :
ing for point clouds operates in an offset band consistinlgljdealn distance map fp. Thatis
of the union of ball8B(p;,r) centred at (black) points IVmTm(p)| = F(p), 1)
of the surfaceM (left). Only those (blue) grid points
falling inside the offset band are considered during prior p € M and with boundary conditioffy(q) = 0 is
cessing. Cross-sectional view of a constant radius offggroximated by

band for the Michelangelo Youthful data set (right).

Vs (p)| = F(p), @)

To the best of our knowledge, there exists onlgr p ¢ Qf, and boundary conditioiﬁ%(q) =0. F rep-
one previous piece of work which touches upon thigsents the (smooth) extension of the propagation speed
notion of meshless subdivision. In Fleishman &t on M into QL. T(p) denotes the arrival time gt
al. [FCOASO3], the authors generate progressive leved$-the front originating fromg and Vyy and V repre-
of-detail of point clouds by transferring the mesh-base@nt the intrinsic and the Euclidean gradient operators
idea of subdivision displacement maps to the poirdspectively. The problem of computing an intrinsic dis-
cloud case. They devise a point cloud simplificatioance map is therefore transformed into the problem of
method for the generation of a base point set and presgfhputing an extrinsic (Euclidean) distance map in the
both a projection and a local, uniform upsampling opefabular neighbourhoo®}, around the surface, i.e. in an
ator with the help of local surface reconstruction usirguclidean manifold with boundary. In [MS03], the au-
Moving Least Squares [ABC@3]. By contrast, we are thors prove uniform probabilistic convergence between
not aiming to mimic the principle of mesh-based sulthese two distance maps and thus show that the approxi-
division displacement mapping for point-based surfaggation error between the intrinsic and extrinsic distance
representations but rather are interested in transferrigips is of the same theoretical order as that of the Fast
the idea of mesh subdivision to the point cloud case. Marching algorithm for both noise-free and noisy point
In the following, we propose a first intrinsic frame¢louds (assumming noise to be bounded from above by
work for the meshless subdivision of a point cloBd r). The Fast Marching method can therefore be used to
to a refined point cloudd ; 1, with | defined as above.approximate the solution to (2) in a computationally op-
We start our discussion with a summary of the intrinsigimal manner and without the need for any prior surface
distance mapping algorithm [MS03] at the heart of thigconstruction by only slightly modifying the original
intrinsic framework. This summary is followed by theCartesian Fast Marching technique to deal with bounded
presentation of the intrinsic meshless subdivision framgpaces. The relatively straightforward implementation
work itself. of this technique consists of, firstly, computing the offset
bandQf, followed by the application of standard Carte-
sian Fast Marching restricted 5. For more imple-
3 Intrinsic distance mapping mentational details, see Mémoli and Sapiro [MS03].
. This approach underpins both the point cloud sim-
across pomt clouds plification technique for the generation of a base point
set and our geodesic computation algorithm presented

We summarise the extension of the well-known origlis narts of our meshless subdivision framework in the
nal Fast Marching level set method [HPCD96, Setg%llowing section.

Tsi95] to the case of surfaces in point cloud form
as introduced in [MS03]. Our review is necessarily
terse, presenting just the key results. For full detaild, |ntrinsic meshless subdivision
see [MS03].
Let P = {p1,p2,...,pn} denote a set of points, orWe start with a brief summary of the intrinsic point set
point cloud, acquired from a smooth, compact manifokimplification method utilised for the computation of a



base point sePy. This is followed by the considera- ad
tion of a suitable intrinsic neighbourhood concept. TH&)
section concludes with the presentation of the meshle
subdivision operator and our method for the comput
tion of geodesic centroids.

41 Intrins int cloud s lificati Figure 2: Wave propagation for the incremental com-
. ntrinsc point cloud smplimcation putation of discrete intrinsic bounded Voronoi diagrams

Depending on the method used for the acquisition apd t'hus. progressive intrinsic (red) farthest samplg point

a point cloud representation of a surface, the resultifggalisation of 21, 23 and 25 sample sites on a triangu-

point-sampled geometry might be extremely dense. \fed surface (from left to right).

simplify any such input point cloul to a coarser base

point setPy in a preprocessing step. This operation is .

to be performed subject to a minimum density conditio%omPUtat'onS' o ) )
The use of this simplification technique also yields

to support the meaningful computation of geodesic cen-d_ intrinsic Vi i di f the simplified
troids acros$,. Note in this context that in contrast t Iscrete Intrinsic Voronoi diagram of the simpliiie

mesh subdivision preprocessing, this simplification stBB'nt set. As discussed ne>§t, the avallablllty O.f th|s di-
is fully geometric in nature. agram suggests the collecting of local proximity infor-

As regards the particular simplification techniqug1at|on using a Voronol diagram-based neighbourhood

used, Pauly et al. [PGKO2] introduce a number &oncept.
point cloud simplification methods by adapting various
widely use_d mesh simplificgtion te_chniques t(_) the poigto  |ntrinsic proximity information
cloud setting. Although their particle simulation-based
simplification method represents an interesting alterrBubdivision schemes incorporate refinement and geo-
tive, we opt for the farthest point simplification schemmetric averaging rules in the form of weighted averages
presented in [MDO3] instead. This choice is due tof local neighbourhoods. Whilst in a surface mesh con-
the method’s superior efficiency, its purely intrinsic ndext local neighbourhoods follow from mesh connectiv-
ture, its simple density control and its close relationshity, in the meshless case this connectivity information is
with a useful (intrinsic) local proximity concept (Secfeplaced by local proximity information. Itis interesting
tion 4.2). to note in this context how information which is gener-
The point cloud simplification method [MDO03] ex-ally not related to the geometry of the problem such as
ploits the observation that the progressive farthest poinesh connectivity plays such an important role for mesh
sampling of a point cloud® may be implemented subdivision. For example, the same object when repre-
by incremental intrinsic (bounded) Voronoi diagrangented with different types of connectivity requires the
BVD(P), computation [MD03, OBS00]. This incremenapplication of different mesh subdivision schemes al-
tal computation is performed following an expandinthough it is geometrically unchanged. This importance
waves view: In analogy to the dropping of pebbles imas contributed to the substantial research efforts in the
still water, circular fronts move across the surface froarea of remeshing. The role of mesh connectivity in
the point of impact. The locations where wave frontsesh subdivision also explains the existence of numer-
meet or leave the domain define the intrinsic boundeds subdivision operators restricted in applicability to a
Voronoi diagram of the points of impact. See Figure Rarticular type of mesh only. By contrast, as described
for a triangular mesh-based example produced usinghe following, in the case of our meshless subdivision
public domain software [PC03]. This wave propaga&perator, point cloud proximity is determined intrinsi-
tion is discretised and simulated accurately by solvirglly with the subdivision operator purely formulated in
the Eikonal equation (1) using the extended Fast MardRfms of local proximity.
ing method for intrinsic distance mapping across point To allow for any irregularity in the base point d&,
clouds [MS03] summarised in the previous section. Bye favour the use of a neighbourhood concept ensuring
letting the user control the radius of the largest empayspherical distribution of neighbougsaround the point
circle in the domain of the simplified point set, thi$ under consideration. Simple ball kmearest neigh-
method provides guaranteed bounds on the minimioourhoods fail to guarantee such a neighbour distribu-
and maximum distance between neighbouring samfiten [FRO1]. Neighbourhood concepts meeting this re-
points (Figure 3). It thus allows for the relatively simplguirement include Linsen’s [Lin01] enhanckahearest
control of a guaranteed density of the simplified poimeighbourhood, which enforces a maximum angle be-
set [MDO3]. We exploit this property to simplify anytween successive neighbours aroymand Floater and
highly dense inpuP to a base point se® still suffi- Reimer’s [FRO1] local Delaunay neighbourhood. Since
ciently dense to support meaningful geodesic centradr simplification algorithm provides a (discrete) intrin-

4



—~-—Ppi

Figure 3: The intrinsic point cloud simplification al-
gorithm [MDO03] incrementally computes a geodesic
Voronoi diagram across the point-sampled geometry. As
illustrated here for the planar case, it guarantees a user-

controlled density by letting the user set the ragiusf Figure 4: Updating of an intrinsic Voronoi diagram fol-
the largest empty circle in the domain of the simplifiedwing insertion of a pointp;. The new Voronoi re-
point set. The availability of the geodesic Voronoi diggionR(p;, R ) is grown across the refined point cloBd
gram supports the immediate determination of intrinsiendered using an enlarged point size. This is achieved
proximity information in the form of natural neighbourby propagating a front from the newly inserted poit
hoods (dashed lines). Note the spherical distribution @ftwards, (a)-(c), until it encounters its neighbouring re-
these neighbours all around the input point under cagions and reaches its final size, (d).

sideration for the kind of irregular uniformity resulting

from the enforcement gd.

R(ps,P1)

. —

€ R by the weighted geodesic centrot € ,
sic Voronoi diagram of, we collect local proximity gf itsHintxrlinsic ne%hbou?hoodlp 0lNp) € P41

information by considering the set of intrinsic Voronoi,

or natural, neighbour, instead, Refinement rule.  For each neighbourg € Np,

Np = {q: p andq are neighbours iBVD(R )} consider the joint intrinsic neighbourhoolp of
P ' p,g € R. UpsampleR by inserting the weighted

for p, g€ R, p#q. BVD(R), and thus the neighbour-geodesic centrois(Npg ) € P11, Of Npg -
hood information, may be maintained by updating the
diagram with any points inserted inf@ thereby ob- _ ) o _
taining BVD(P 1) (Figure 4). Once a refined point set This use of we|ghted cer_1tr0|ds_ in the refinement anq
has reached a certain density, the natural neighbourh§§@Metric averaging rules is reminiscent of both cla“ssr
information may be replaced by theneighbours in- cal subd|V|S|on.schemes [Z2S00] (Section 2) and tht_a re-
trinsically nearest tg. Note that although the naturaP€atéd averaging” approach towards the generation of

neighbourhood concept does not guarantee a spherftidivision surfaces ([OS03] and references therein).

neighbour distribution when dealing with extreme irreg- By performing the averaging intrinsically on the un-
ularity, as indicated in Figure 3, it performs well with

. ) . .. derlying surface represented by point cldjdhe above
the uniform irregular density guaranteed by the mtrug—et %f ?ules raiseg the questi)(/)gs of how to compute

sic point cloud simplification algorithm discussed in thgeodesic averages on manifold surfaces and how to de-

previous section. . . - .
) : . L . termine a suitable weighting scheme. In this paper,
This n@ghbourhood |nformat|on IS _expl0|ted for th(\?ve are interested in showing the conceptual viability of
computation of local weighted centroids as part of o

meshless subdivision scheme presented next qu_shless subdivi_sion. We therefore guide the choice of

' weights by experimental results rather than any theoret-

ical evidence for the scheme’s convergence towards a
4.3 An intrinsic subdivision operator for smooth limit surface. Future work will consider formal

point clouds proofs of the scheme’s convergence to a limit surface

o _and, consequently, any light such proofs may throw on
Mesh-based subdivision uses rules based on weigh{iggl optimal choice of weights.

averages of local neighbourhoods following from mesh

connectivity. Within our intrinsic meshless subdivision As regards the computation of geodesic centroids,
framework, we replace these extrinsic weighted avduss and Fillmore [BF01] present an algorithm for the
ages of topological neighbours by intrinsic weightecbmputation of geodesic averages on spheres. We gen-
averages of intrinsically neighbouring points. Moreralise the underlying, earlier idea ([Kar77] and refer-
specifically, we suggest the following set of rules: ences therein) of minimising a least squares expression
in weighted geodesic distances to non-spherical geome-
Geometric averaging rule: At each iteration, replacetry in the following section.




convexity: For anyp,q € By, we require that the short-
est geodesic fromp to g is unique inM and contained in
Bum.
In the Euclidean case, direct differentiation &(f)
o yields the minimizeg = $}_; Wkpk. This simple result
° does not extend to the general case considered here but
we can prove that any minimizer must satisfy:

n
. 1. _
Figure 5: The unweighted centroid of a (blue) subset Vig)i= k;WNMEdM (9,p) =0.

of this symmetric set of points on a surface is expected

to be located on or near the underlying surface. Sintgen, starting from good initial guessgo, we can track

it is based on the consideration of intrinsic distancd§g minimizerg using back propagation with velocity
this is the case when computing the geodesic centréigld V (-). This is a sensible procedure sinc@ifc By
(red). By contrast, in the case of the Euclidean averay?d Bu as above, then-V(x) points towardsgs,, for

ing of the (blue) points, the resulting centroid (grey) K€ Bwm [Kar77].

located away from the underlying surface. This effect In practise, we sedo = M (3 k_1 WkPk), wherely :
gets more pronounced when increasing the size of ®f — M is the orthogonal projection operator. We now
subset whilst the position of the geodesic centroid rghow that in the light of the considerations presented

mains unaffected due to the symmetry of the point codbove, this represents either a reasonable initial condi-
stellation (from left to right). tion for the back propagation or a first approximation to

the intrinsic centroid. By a simple application of Lemma

4.4 Geodesic centroid computation

n
When considering the concept of meshless geometric

17 of [WDO03], we have that
n
- . : ) Wik — M <2Wkpk)
subdivision by recursive weighted averaging of local 1 =1
point neighbourhoods, the benefit of performing these ) i
centroid computations intrinsically rather than in th@hereC is a global constant which depends on the cur-
Euclidean domain may not be immediately clear. T¢tures ofM. Then, letB = Bu(x,¢), for somex € M
see the need for operating intrinsically throughout, nc@@d € - 0. Since||pi —x|| < dum(pi,x) <&, one also
that subdivision should ideally generate incresasing{?é‘s” Yk-1WkPx — X|| < €. Therefore, sincggo — || <
smoother representations which are still geometricall§o — ¥ k1 WPkl + [| Sy WPk — ||, we obtain
close to the surface represented by the input data. This
is not guaranteed to be the case when considering Eu-

clidean instead of geodesic centroids. For the simpjgich impliesdw (go, ) < €(1+ De)(1+ Ce), for an-
example illustrated in Figure 5, Euclidean averagingher constanb depending on global metric properties

moves the centroid away from the surface. By contrag, [MS03]. We only care for a simplified bound

since, by definition, geodesic centroid computation is

based on intrinsic distances, the geodesic centroid falls dm (9o, X) < Ee.

onto the surface. We therefore consider geodesic cen- B

troids throughout the subdivision process and preséiially, let & > 0 be the maximald > 0 such that

our method for computing these centroids on manifoB (x,) is convex. Note that it is a fact that & <

surfaces next. L min(inj(M), %) , whereinj(M) is the injectivity ra-
The weighted (geod_esic) (_:entroid of a set of POiNif ;s ot M andK bounds all sectional curvatures

{P1,....pn} © M C R is defined as the poirg € M om apove, theiBy (x, 3) is convex for any € M. See

< C(diam(B))?,

k=

lgo —x]| < Ce®+¢,

which minimizes §7.6 and 87.7 in [Cha97]. For suclda 0 and provided
o1 2 € <O/E, and{py,...,pn} C Bu(x,€) for somex € M,
) = 2 k=1Wde(g7 PK); do € Bu(x,0) and V(go) will be pointing towardgg,, .

Also, in case we want to ugg as an approximation to
wherew, ..., w, are the weights: & w; <1, zinzlwi = 0g,. We have the (weak) bourti; (gg,,,Jo0) < (E+1)e.

1 anddw(.,.) is the geodesic distance. In general, thEherefore,go, as defined above, represents a sensible
set of minimizers ofJ(-) need not be a single point.choice as the initial condition of an eventual back prop-
However, whenp;, ..., p, are all contained in a suffi- agation step, or, in any case, a rough approximation to
ciently small open geodesic bdly on M, there exists gg,, with known error bound. Note in particular that it
exactly one minimizewgg,, of J(-), which happens to lie is also a useful choice from the point of view of compu-
in By [Kar77]. The property we are alluding to here isational ease.



To demonstrate the applicability of this approach in**
the context of meshless subdivision, we consider th
case ofM representing the unit sphere in the following
section.

1200
1000

800

5 Experimental results
We begin by considering the intrinsic meshless subdivi
sion of a set of points sampled relatively regularly uni- |
formly from the surface of the unit sphere. This ini- |
tial restriction to spherical geometry allows us to dis-
cuss qualitative and quantitative aspects of our meshle
subdivision operator without the need for taking into ac-,, - ‘ o
count the effects of any particular normal estimation
projection and gradient descent operations performeswot
when processing more complex geometry.

To implement the intrinsic centroid computation *®f
method and thus our intrinsic meshless subdivision og
erator presented in the previous sections, techniques f
the computation of intrinsic distances between pointso__|
the surface, the projection of the starting point for the
back propagation onto the surface and the computatic,,|
of the back propagation itself are required. In the cas
of the unit sphere, these techniques are readily avaiwo|
able. Intrinsic distances between points follow trigono-
metrically and orthogonal projection is trivial. Simi- g5 oz ool ool oos oo oom o0
larly, the exponential map and its inverse are directly
available and may be used to implement the back prdfigure 6: Histograms of the (spherical) distance from
agation procedure. As a result, for the case of spheriealkch point inP; (top) andP, (bottom) to its closest
geometry, our approach for geodesic centroid computeeighbour in the respective set.
tion narrows down to the technique of [BFO1].

We apply our intrinsic meshless subdivision operator
to a base point sé¥ of 2144 points sampled relativelyuse of uniform weights. The size of 85/ and 34275
regularly uniformly from the unit sphere and shown ifP2) points respectively of the subdivided point sets co-
Figure 7. To obtain initial natural neighbour proximityncide for both subdivision schemes. There are no no-
information for points inPy, we use the intrinsic point ticeable differences in the smoothing effect of these two
cloud simplification algorithm [MDO03] without request-operators.
ing any simplification. The application of our intrinsic In order to add some quantitative detall to the anal-
subdivision operator t& using this initial proximity ysis of the point sets generated by our subdivision op-
information then yields the subdivided point &tpre- erator, we compute the mean and the standard devia-
sented in Figure 7. The resuly, obtained from the ap- tion of the distance from each point in the set to its
plication of the operator t&; using natural neighbourclosest neighbor(s) for the subdivided point d&tsnd
information updated as described in Section 4.2 is alBa For eachx in the point setP C S, let sdk(x) de-
shown. Given the relatively strong regularity of the imote the distance from to its kth closest neighbour.
put data, uniform weighting was used for both the rés an indicator for the uniformity of the density of a
finement and the geometric averaging rule in both itenpaeint setP (at level k), we use, for a positive integer
tions. The results produced by our meshless subdivisigm (k) = minp st (X) Sincep(k) represents an absolute

4000

. . maxp sy (X)
operator are presented alongside the point sets produgfsure it ma)l/( be too sensitive, therefore we compute
by the application of the Loop subdivision scheme to —7% _ meansd,)—Stdsdy)

a triangular mesh representation of the base point s|g§.teadp(k) ~ meansdy)+Stdsdy) ’ whe.re .mean and Std,
As indicated by the detail views of Figure 7, the poirﬁta”d for the_ mean and standard deviation over the point
distributions obtained from the two operators after twfl respectively.

iterations are qualitatively similar with the slight irregu- The histograms ofd;(x) corresponding to the two
larities in the distribution oPy being slightly more pro- Sets of points are given in Figure 6. Note in Table 1
nounced in the case of meshless subdivision due to that the values op(k) (for 1 < k < 10) are quite close



Model\ k 1 2 3 4 5 and Dyn [WDO03, WDO04] show the convergence and

Py 0.807 | 0.832 | 0.832| 0.821 | 0.788 | gmoothness of non-linear geodesic curve subdivision by
P 0%81 0~E;15 0‘8823 0~8904 0~17§5 proximity to a corresponding linear extrinsic subdivi-

sion scheme. Since our meshless subdivision scheme

El 8’383 %87193;32 8'322 %88118 8‘222 operates inside a small Euclidean offset band around the
2 - - - - . point cloud throughout, following [MS01, MS03], we
intend to exploit this idea in a surface context to anal-
Table 1: Values ofp/(E) for P, and P, and withk e yse thg convergence and continuity of intrinsic meshless
(1,2,...,10}. subdivision schemes.

to 1 therefore indicating small dispersion up to the 10@1\CknOW|edgementS

CIOS_eSt neighbqr. _ The Loop subdivision implementation was obtained
Finally, in Figure 8 we present examples dealing,m, yytaka Ohtake's web site at http://iwww.mpi-

with more complicated geometry. These results WeLB mpg.de/~ohtake/software/. The Venus data
produced by using the projected Euclidean centmpid ¢ot \was taken from the Cyberware web site at
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Figure 7: The base point s, of 2144 points acquired from the unit sphere (left), is subdivided recursively
using both our meshless subdivision operator (bottom) and Loop subdivision (top). The triangular base
mesh generated frof for the support of Loop subdivision is shown on the left. The subdivided point
setsP; (8570 points) and®, (34275 points) are shown in the center and on the right respectively. The
corresponding reconstructed surfaces are given next to each point set. Both these surfaces and the base
mesh were computed with the help of public domain software [Par]. (This figure is best seen on-screen.)

Figure 8: Example for the meshless geometric subdivision of more elaborate geometry in form of the Venus data
set. The base point set is displayed on the left, the result obtained after two iterations of meshless
geometric subdivision is shown on the right. See text for details on the steps for the production of these
results and comments on the slightly non-uniform distribution of the subdivided point sets. All surfaces
were reconstructed with the help of public domain software [Par].
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