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Abstract

Point-based surface processing has developed into an at-
tractive alternative to mesh-based processing techniques
for a number of geometric modeling applications. By
working with point cloud data directly, any processing
is based on the given raw data and its underlying geome-
try rather than any arbitrary intermediate representations
and generally artificial connectivity relations. In this pa-
per, we introduce the notion of meshless, or point cloud,
subdivision by extending concepts from recursive mesh
subdivision to the point cloud case. We are primarily
concerned with showing the conceptual viability of this
idea and propose a first geometric meshless subdivision
framework. By replacing the role of mesh connectiv-
ity by intrinsic point proximity information and devis-
ing a meshless geodesic subdivision operator, we avoid
the costly surface reconstruction, simplification and po-
tential remeshing preprocessing steps typically required
for supporting mesh-based subdivision, steps which are
in general not directly related to the underlying object
geometry. Furthermore, the maintenance of any global
combinatorial data structure such as a mesh connectivity
graph is not required. This property also makes our ap-
proach relatively easily extensible to the processing of
point-based representations of higher-dimensional sur-

∗The author performed this work whilst visiting the University of
Minnesota.

faces. Apart from introducing the idea of meshless
subdivision, our main contributions are, firstly, a first
meshless geodesic subdivision operator. Secondly, we
present a new method for the computation of geodesic
weighted averages on manifold surfaces, which are at
the heart of our point cloud subdivision framework.

1 Introduction

Point-based editing, free-form and multiresolution mod-
elling and visualisation have developed into viable alter-
natives to mesh-based processing methods [ABCO∗03,
PGK02, PKKG03, ZPvBG01, ZPKG02]. With nu-
merous applications in medical imaging, reverse engi-
neering, cultural heritage, geoscience, etc. acquiring
point sets of significant density from three or higher-
dimensional manifold surfaces, it is particularly attrac-
tive to be able to work with point-sampled geometry di-
rectly.

In the context of mesh-based surface processing, sub-
division has developed into a powerful and widely-
used tool for the free-form design and representation
of smooth surfaces. These schemes use a subdivision
operator which is recursively applied to a coarse base
mesh. As a result, a sequence of refined meshes is ob-
tained which quickly converges to a smooth limit sur-
face. For many applications, the initial base mesh is
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obtained by costly polygonisation of point-sampled ge-
ometry. Highly dense point sets thereby translate into
excessively dense polygonal models with arbitrary con-
nectivity. This is generally followed by another costly
mesh simplification step and often the need for remesh-
ing ([ACSD∗03] and the references therein) to enforce
subdivision connectivity of the base mesh. Ease of ma-
nipulation tends to be further affected by the inherent
overhead of mesh data structure maintenance and traver-
sal.

This paper presents a first framework for meshless, or
point cloud, subdivision. That is, we propose to avoid
the consideration of mesh connectivity graphs and in-
stead to work with the given point-sampled geometry
directly and intrinsically throughout. We undertake a
first step towards such an extension of recursive mesh
subdivision to point clouds by introducing a meshless
geodesic subdivision operator reminiscent of widely-
used mesh subdivision operators. More specifically, we
replace mesh connectivity by intrinsic proximity infor-
mation and introduce meshless subdivision rules using
geodesic centroids of local intrinsic point neighbour-
hoods. Although some of these geometric operations
may be approximated in an Euclidean context when
working with large sampling densities, regular meshes
and very local subdivision rules, working with the point-
sampled geometry directly and intrinsically has the ben-
efit of not requiring any non-geometric preprocessing
steps. Furthermore, an intrinsic point cloud subdivision
approach is more generally applicable in that geodesic
averaging rules can be non-local and do not vary with
the particular type of data (mesh) representation used.

The focus of this paper is on highlighting the concep-
tual viability of meshless subdivision by putting forward
a first suitable framework. Our ideas on the theoretical
analysis of meshless geodesic subdivision schemes will
be reported elsewhere.

Both our intrinsic point cloud simplification method
for the determination of a base point set and our
geodesic centroid technique are based upon the intrinsic
distance mapping algorithm for point clouds presented
in [MS03]. Following a brief overview of related work
in Section 2, we therefore summarise the main aspects
of this technique in Section 3. Section 4 presents the
various elements of our intrinsic meshless subdivision
framework. Section 5 gives experimental results. In the
concluding Section 6, we briefly remark on our idea for
the theoretical analysis of intrinsic meshless subdivision
schemes.

2 Related work

We start with providing a brief summary of the ideas
underpinning mesh-based subdivision of surfaces inR

3.
The overview is motivational in nature, for a thorough

formal treatment of mesh subdivision, see [DL02].
Following the notation of [DL02], surface subdivi-

sion schemes consist of a subdivision operatorS recur-
sively applied to control netsNl = N(V l ,El ,Fl) of ar-
bitrary topology, withl ∈ Z0 denoting the subdivision
level,V representing a set of control vertices inR

3 and
E andF describing the topological relations in the form
of edges and faces respectively. That is, the iterative ap-
plication of a subdivision scheme generates a sequence

Nl+1 = SNl .

Define the surfaceX ⊆ R
3 as the limit surface of a

scheme given that

lim
l→∞

dH(V l ,X) = 0,

with

dH(X ,Y ) = max{sup
y∈Y

inf
x∈X

||x− y||2,sup
x∈X

inf
y∈Y

||x− y||2}

representing the Euclidean Hausdorff distance between
the closed subsetsX ,Y ⊂ R

3. Starting with the coarse
base netN0, at each iteration, new control vertices are
inserted and connected according to the scheme’s re-
finement rule. Control vertices are then re-positioned
following the operator’s geometric averaging rule. Both
the refinement and the geometric rule give the position
of control vertices inNl+1 in the form of weighted aver-
ages of topologically neighbouring vertices inNl . The
careful choice of these rules in relation to the valency
of the control vertex under consideration guarantees the
convergence of the scheme to a limit surface of prov-
able continuity. Note that for the subdivision schemes
in the literature the convergence is in each component
and in the uniform norm. Convergence in the Hausdorff
distance is not yet achieved.

Not every existing mesh subdivision operator allows
for such a simple distinction between a topological re-
finement and a geometric averaging rule applicable at
all points. However, those that do allow for this kind of
distinction, include the most widely-used schemes. For
example, Loop [Loo87] subdivision for triangular con-
trol nets may be cast in this form. In the case of Loop
subdivision, the refinement rule consists of the insertion
of a new point at the midpoint of every edge, while the
geometric rule, applicable at all points in the new mesh,
smoothes the locations of the points by weighted averag-
ing of their topological neighbours in the refined mesh.

In this paper, we propose to replace this use of mesh
connectivity by intrinsic proximity information and for-
mulate meshless refinement and geometric averaging
rules in the form of weighted geodesic centroids of local
neighbourhoods. As a result, we obtain a meshless sub-
division scheme reminiscent of mesh-based subdivision
operators.
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Figure 1: Intrinsic distance mapping using Fast March-
ing for point clouds operates in an offset band consisting
of the union of ballsB(pi,r) centred at (black) pointspi

of the surfaceM (left). Only those (blue) grid points
falling inside the offset band are considered during pro-
cessing. Cross-sectional view of a constant radius offset
band for the Michelangelo Youthful data set (right).

To the best of our knowledge, there exists only
one previous piece of work which touches upon this
notion of meshless subdivision. In Fleishman et
al. [FCOAS03], the authors generate progressive levels-
of-detail of point clouds by transferring the mesh-based
idea of subdivision displacement maps to the point
cloud case. They devise a point cloud simplification
method for the generation of a base point set and present
both a projection and a local, uniform upsampling oper-
ator with the help of local surface reconstruction using
Moving Least Squares [ABCO∗03]. By contrast, we are
not aiming to mimic the principle of mesh-based sub-
division displacement mapping for point-based surface
representations but rather are interested in transferring
the idea of mesh subdivision to the point cloud case.

In the following, we propose a first intrinsic frame-
work for the meshless subdivision of a point cloudPl

to a refined point cloudPl+1, with l defined as above.
We start our discussion with a summary of the intrinsic
distance mapping algorithm [MS03] at the heart of this
intrinsic framework. This summary is followed by the
presentation of the intrinsic meshless subdivision frame-
work itself.

3 Intrinsic distance mapping
across point clouds

We summarise the extension of the well-known origi-
nal Fast Marching level set method [HPCD96, Set99,
Tsi95] to the case of surfaces in point cloud form
as introduced in [MS03]. Our review is necessarily
terse, presenting just the key results. For full details,
see [MS03].

Let P = {p1, p2, . . . , pn} denote a set of points, or
point cloud, acquired from a smooth, compact manifold

surfaceM in m ≥ 3 dimensions. Define ther-offsetΩr
P

as the union of Euclidean balls with radiusr centred at
pointspi ∈ P

Ωr
P :=

n⋃
i=1

B(pi,r) = {x ∈ R
m : d(pi,x) ≤ r},

where d(., .) denotes the Euclidean distance function
(Figure 1). To approximate the weighted intrinsic dis-
tance map originating from a source pointq ∈ M on M,
Mémoli and Sapiro [MS03] suggest computing the Eu-
clidean distance map inΩr

P. That is

|∇MTM(p)| = F(p), (1)

for p ∈ M and with boundary conditionTM(q) = 0 is
approximated by

|∇TΩr
P
(p)| = F̃(p), (2)

for p ∈ Ωr
P and boundary conditionTΩr

P
(q) = 0. F̃ rep-

resents the (smooth) extension of the propagation speed
F on M into Ωr

P. T (p) denotes the arrival time atp
of the front originating fromq and∇M and∇ repre-
sent the intrinsic and the Euclidean gradient operators
respectively. The problem of computing an intrinsic dis-
tance map is therefore transformed into the problem of
computing an extrinsic (Euclidean) distance map in the
tubular neighbourhoodΩr

P around the surface, i.e. in an
Euclidean manifold with boundary. In [MS03], the au-
thors prove uniform probabilistic convergence between
these two distance maps and thus show that the approxi-
mation error between the intrinsic and extrinsic distance
maps is of the same theoretical order as that of the Fast
Marching algorithm for both noise-free and noisy point
clouds (assumming noise to be bounded from above by
r). The Fast Marching method can therefore be used to
approximate the solution to (2) in a computationally op-
timal manner and without the need for any prior surface
reconstruction by only slightly modifying the original
Cartesian Fast Marching technique to deal with bounded
spaces. The relatively straightforward implementation
of this technique consists of, firstly, computing the offset
bandΩr

P, followed by the application of standard Carte-
sian Fast Marching restricted toΩr

P. For more imple-
mentational details, see Mémoli and Sapiro [MS03].

This approach underpins both the point cloud sim-
plification technique for the generation of a base point
set and our geodesic computation algorithm presented
as parts of our meshless subdivision framework in the
following section.

4 Intrinsic meshless subdivision

We start with a brief summary of the intrinsic point set
simplification method utilised for the computation of a
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base point setP0. This is followed by the considera-
tion of a suitable intrinsic neighbourhood concept. The
section concludes with the presentation of the meshless
subdivision operator and our method for the computa-
tion of geodesic centroids.

4.1 Intrinsic point cloud simplification

Depending on the method used for the acquisition of
a point cloud representation of a surface, the resulting
point-sampled geometry might be extremely dense. We
simplify any such input point cloudP to a coarser base
point setP0 in a preprocessing step. This operation is
to be performed subject to a minimum density condition
to support the meaningful computation of geodesic cen-
troids acrossP0. Note in this context that in contrast to
mesh subdivision preprocessing, this simplification step
is fully geometric in nature.

As regards the particular simplification technique
used, Pauly et al. [PGK02] introduce a number of
point cloud simplification methods by adapting various
widely used mesh simplification techniques to the point
cloud setting. Although their particle simulation-based
simplification method represents an interesting alterna-
tive, we opt for the farthest point simplification scheme
presented in [MD03] instead. This choice is due to
the method’s superior efficiency, its purely intrinsic na-
ture, its simple density control and its close relationship
with a useful (intrinsic) local proximity concept (Sec-
tion 4.2).

The point cloud simplification method [MD03] ex-
ploits the observation that the progressive farthest point
sampling of a point cloudP may be implemented
by incremental intrinsic (bounded) Voronoi diagram,
BVD(P), computation [MD03, OBS00]. This incremen-
tal computation is performed following an expanding
waves view: In analogy to the dropping of pebbles in
still water, circular fronts move across the surface from
the point of impact. The locations where wave fronts
meet or leave the domain define the intrinsic bounded
Voronoi diagram of the points of impact. See Figure 2
for a triangular mesh-based example produced using
public domain software [PC03]. This wave propaga-
tion is discretised and simulated accurately by solving
the Eikonal equation (1) using the extended Fast March-
ing method for intrinsic distance mapping across point
clouds [MS03] summarised in the previous section. By
letting the user control the radius of the largest empty
circle in the domain of the simplified point set, this
method provides guaranteed bounds on the minimum
and maximum distance between neighbouring sample
points (Figure 3). It thus allows for the relatively simple
control of a guaranteed density of the simplified point
set [MD03]. We exploit this property to simplify any
highly dense inputP to a base point setP0 still suffi-
ciently dense to support meaningful geodesic centroid

Figure 2: Wave propagation for the incremental com-
putation of discrete intrinsic bounded Voronoi diagrams
and thus progressive intrinsic (red) farthest sample point
localisation of 21, 23 and 25 sample sites on a triangu-
lated surface (from left to right).

computations.
The use of this simplification technique also yields

a discrete intrinsic Voronoi diagram of the simplified
point set. As discussed next, the availability of this di-
agram suggests the collecting of local proximity infor-
mation using a Voronoi diagram-based neighbourhood
concept.

4.2 Intrinsic proximity information

Subdivision schemes incorporate refinement and geo-
metric averaging rules in the form of weighted averages
of local neighbourhoods. Whilst in a surface mesh con-
text local neighbourhoods follow from mesh connectiv-
ity, in the meshless case this connectivity information is
replaced by local proximity information. It is interesting
to note in this context how information which is gener-
ally not related to the geometry of the problem such as
mesh connectivity plays such an important role for mesh
subdivision. For example, the same object when repre-
sented with different types of connectivity requires the
application of different mesh subdivision schemes al-
though it is geometrically unchanged. This importance
has contributed to the substantial research efforts in the
area of remeshing. The role of mesh connectivity in
mesh subdivision also explains the existence of numer-
ous subdivision operators restricted in applicability to a
particular type of mesh only. By contrast, as described
in the following, in the case of our meshless subdivision
operator, point cloud proximity is determined intrinsi-
cally with the subdivision operator purely formulated in
terms of local proximity.

To allow for any irregularity in the base point setP0,
we favour the use of a neighbourhood concept ensuring
a spherical distribution of neighboursqi around the point
p under consideration. Simple ball ork nearest neigh-
bourhoods fail to guarantee such a neighbour distribu-
tion [FR01]. Neighbourhood concepts meeting this re-
quirement include Linsen’s [Lin01] enhancedk nearest
neighbourhood, which enforces a maximum angle be-
tween successive neighbours aroundp, and Floater and
Reimer’s [FR01] local Delaunay neighbourhood. Since
our simplification algorithm provides a (discrete) intrin-
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Figure 3: The intrinsic point cloud simplification al-
gorithm [MD03] incrementally computes a geodesic
Voronoi diagram across the point-sampled geometry. As
illustrated here for the planar case, it guarantees a user-
controlled density by letting the user set the radiusρ of
the largest empty circle in the domain of the simplified
point set. The availability of the geodesic Voronoi dia-
gram supports the immediate determination of intrinsic
proximity information in the form of natural neighbour-
hoods (dashed lines). Note the spherical distribution of
these neighbours all around the input point under con-
sideration for the kind of irregular uniformity resulting
from the enforcement ofρ.

sic Voronoi diagram ofP0, we collect local proximity
information by considering the set of intrinsic Voronoi,
or natural, neighboursNp instead,

Np = {q : p andq are neighbours inBVD(Pl)},

for p, q ∈ Pl , p �= q. BVD(Pl), and thus the neighbour-
hood information, may be maintained by updating the
diagram with any points inserted intoPl thereby ob-
tainingBVD(Pl+1) (Figure 4). Once a refined point set
has reached a certain density, the natural neighbourhood
information may be replaced by thek neighbours in-
trinsically nearest top. Note that although the natural
neighbourhood concept does not guarantee a spherical
neighbour distribution when dealing with extreme irreg-
ularity, as indicated in Figure 3, it performs well with
the uniform irregular density guaranteed by the intrin-
sic point cloud simplification algorithm discussed in the
previous section.

This neighbourhood information is exploited for the
computation of local weighted centroids as part of our
meshless subdivision scheme presented next.

4.3 An intrinsic subdivision operator for
point clouds

Mesh-based subdivision uses rules based on weighted
averages of local neighbourhoods following from mesh
connectivity. Within our intrinsic meshless subdivision
framework, we replace these extrinsic weighted aver-
ages of topological neighbours by intrinsic weighted
averages of intrinsically neighbouring points. More
specifically, we suggest the following set of rules:

Geometric averaging rule: At each iteration, replace

Figure 4: Updating of an intrinsic Voronoi diagram fol-
lowing insertion of a pointp j. The new Voronoi re-
gionR(p j,Pl) is grown across the refined point cloudPl

rendered using an enlarged point size. This is achieved
by propagating a front from the newly inserted pointpj

outwards, (a)-(c), until it encounters its neighbouring re-
gions and reaches its final size, (d).

p ∈ Pl by the weighted geodesic centroid,c(Np) ∈ Pl+1,
of its intrinsic neighbourhoodNp.

Refinement rule: For each neighbourqi ∈ Np,
consider the joint intrinsic neighbourhoodNpqi of
p,qi ∈ Pl . UpsamplePl by inserting the weighted
geodesic centroid,c(Npqi) ∈ Pl+1, of Npqi .

This use of weighted centroids in the refinement and
geometric averaging rules is reminiscent of both classi-
cal subdivision schemes [ZS00] (Section 2) and the “re-
peated averaging” approach towards the generation of
subdivision surfaces ([OS03] and references therein).

By performing the averaging intrinsically on the un-
derlying surface represented by point cloudP, the above
set of rules raises the questions of how to compute
geodesic averages on manifold surfaces and how to de-
termine a suitable weighting scheme. In this paper,
we are interested in showing the conceptual viability of
meshless subdivision. We therefore guide the choice of
weights by experimental results rather than any theoret-
ical evidence for the scheme’s convergence towards a
smooth limit surface. Future work will consider formal
proofs of the scheme’s convergence to a limit surface
and, consequently, any light such proofs may throw on
the optimal choice of weights.

As regards the computation of geodesic centroids,
Buss and Fillmore [BF01] present an algorithm for the
computation of geodesic averages on spheres. We gen-
eralise the underlying, earlier idea ([Kar77] and refer-
ences therein) of minimising a least squares expression
in weighted geodesic distances to non-spherical geome-
try in the following section.
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Figure 5: The unweighted centroid of a (blue) subset
of this symmetric set of points on a surface is expected
to be located on or near the underlying surface. Since
it is based on the consideration of intrinsic distances,
this is the case when computing the geodesic centroid
(red). By contrast, in the case of the Euclidean averag-
ing of the (blue) points, the resulting centroid (grey) is
located away from the underlying surface. This effect
gets more pronounced when increasing the size of the
subset whilst the position of the geodesic centroid re-
mains unaffected due to the symmetry of the point con-
stellation (from left to right).

4.4 Geodesic centroid computation

When considering the concept of meshless geometric
subdivision by recursive weighted averaging of local
point neighbourhoods, the benefit of performing these
centroid computations intrinsically rather than in the
Euclidean domain may not be immediately clear. To
see the need for operating intrinsically throughout, note
that subdivision should ideally generate incresasingly
smoother representations which are still geometrically
close to the surface represented by the input data. This
is not guaranteed to be the case when considering Eu-
clidean instead of geodesic centroids. For the simple
example illustrated in Figure 5, Euclidean averaging
moves the centroid away from the surface. By contrast,
since, by definition, geodesic centroid computation is
based on intrinsic distances, the geodesic centroid falls
onto the surface. We therefore consider geodesic cen-
troids throughout the subdivision process and present
our method for computing these centroids on manifold
surfaces next.

The weighted (geodesic) centroid of a set of points
{p1, . . . , pn} ⊂ M ⊂ R

m is defined as the pointg ∈ M
which minimizes

J(g) :=
1
2

n

∑
k=1

wkd2
M(g, pk),

wherew1, . . . ,wn are the weights: 0≤ wi ≤ 1, ∑n
i=1 wi =

1 anddM(., .) is the geodesic distance. In general, the
set of minimizers ofJ(·) need not be a single point.
However, whenp1, . . . , pn are all contained in a suffi-
ciently small open geodesic ballBM on M, there exists
exactly one minimizer,gBM of J(·), which happens to lie
in BM [Kar77]. The property we are alluding to here is

convexity: For anyp,q ∈ BM, we require that the short-
est geodesic fromp to q is unique inM and contained in
BM.

In the Euclidean case, direct differentiation ofJ(·)
yields the minimizerg = ∑n

k=1 wk pk. This simple result
does not extend to the general case considered here but
we can prove that any minimizer must satisfy:

V (g) :=
n

∑
k=1

wk∇M
1
2

d2
M(g, pk) = 0.

Then, starting from agood initial guessg0, we can track
the minimizerg using back propagation with velocity
field V (·). This is a sensible procedure since ifg0 ∈ BM

and BM as above, then−V (x) points towardsgBM for
x ∈ BM [Kar77].

In practise, we setg0 = ΠM (∑n
k=1 wk pk), whereΠM :

Ωr
M → M is the orthogonal projection operator. We now

show that in the light of the considerations presented
above, this represents either a reasonable initial condi-
tion for the back propagation or a first approximation to
the intrinsic centroid. By a simple application of Lemma
17 of [WD03], we have that∥∥∥∥∥ n

∑
k=1

wk pk −ΠM

(
n

∑
k=1

wk pk

)∥∥∥∥∥≤C(diam(B))2,

whereC is a global constant which depends on the cur-
vatures ofM. Then, letB = BM(x,ε), for somex ∈ M
and ε > 0. Since‖pi − x‖ ≤ dM(pi,x) ≤ ε, one also
has‖∑n

k=1 wk pk − x‖ ≤ ε. Therefore, since‖g0− x‖ ≤
‖g0−∑n

k=1 wk pk‖+‖∑n
k=1 wk pk − x‖, we obtain

‖g0− x‖ ≤Cε2 + ε,

which impliesdM(g0,x) ≤ ε(1+ Dε)(1+Cε), for an-
other constantD depending on global metric properties
of M [MS03]. We only care for a simplified bound

dM(g0,x) ≤ Eε.

Finally, let δ > 0 be the maximalδ > 0 such that
BM(x,δ) is convex. Note that it is a fact that ifδ ≤
1
2 min

(
in j(M), π√

K

)
, wherein j(M) is the injectivity ra-

dius of M andK bounds all sectional curvatures inM
from above, thenBM(x,δ) is convex for anyx ∈ M. See
§7.6 and §7.7 in [Cha97]. For such aδ> 0 and provided
ε ≤ δ/E, and{p1, . . . , pn} ⊂ BM(x,ε) for somex ∈ M,
g0 ∈ BM(x,δ) and -V (g0) will be pointing towardsgBM .
Also, in case we want to useg0 as an approximation to
gBM , we have the (weak) bounddM(gBM ,g0)≤ (E +1)ε.
Therefore,g0, as defined above, represents a sensible
choice as the initial condition of an eventual back prop-
agation step, or, in any case, a rough approximation to
gBM with known error bound. Note in particular that it
is also a useful choice from the point of view of compu-
tational ease.
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To demonstrate the applicability of this approach in
the context of meshless subdivision, we consider the
case ofM representing the unit sphere in the following
section.

5 Experimental results

We begin by considering the intrinsic meshless subdivi-
sion of a set of points sampled relatively regularly uni-
formly from the surface of the unit sphere. This ini-
tial restriction to spherical geometry allows us to dis-
cuss qualitative and quantitative aspects of our meshless
subdivision operator without the need for taking into ac-
count the effects of any particular normal estimation,
projection and gradient descent operations performed
when processing more complex geometry.

To implement the intrinsic centroid computation
method and thus our intrinsic meshless subdivision op-
erator presented in the previous sections, techniques for
the computation of intrinsic distances between points on
the surface, the projection of the starting point for the
back propagation onto the surface and the computation
of the back propagation itself are required. In the case
of the unit sphere, these techniques are readily avail-
able. Intrinsic distances between points follow trigono-
metrically and orthogonal projection is trivial. Simi-
larly, the exponential map and its inverse are directly
available and may be used to implement the back prop-
agation procedure. As a result, for the case of spherical
geometry, our approach for geodesic centroid computa-
tion narrows down to the technique of [BF01].

We apply our intrinsic meshless subdivision operator
to a base point setP0 of 2144 points sampled relatively
regularly uniformly from the unit sphere and shown in
Figure 7. To obtain initial natural neighbour proximity
information for points inP0, we use the intrinsic point
cloud simplification algorithm [MD03] without request-
ing any simplification. The application of our intrinsic
subdivision operator toP0 using this initial proximity
information then yields the subdivided point setP1 pre-
sented in Figure 7. The result,P2, obtained from the ap-
plication of the operator toP1 using natural neighbour
information updated as described in Section 4.2 is also
shown. Given the relatively strong regularity of the in-
put data, uniform weighting was used for both the re-
finement and the geometric averaging rule in both itera-
tions. The results produced by our meshless subdivision
operator are presented alongside the point sets produced
by the application of the Loop subdivision scheme to
a triangular mesh representation of the base point set.
As indicated by the detail views of Figure 7, the point
distributions obtained from the two operators after two
iterations are qualitatively similar with the slight irregu-
larities in the distribution ofP0 being slightly more pro-
nounced in the case of meshless subdivision due to the
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Figure 6: Histograms of the (spherical) distance from
each point inP1 (top) andP2 (bottom) to its closest
neighbour in the respective set.

use of uniform weights. The size of 8570 (P1) and 34275
(P2) points respectively of the subdivided point sets co-
incide for both subdivision schemes. There are no no-
ticeable differences in the smoothing effect of these two
operators.

In order to add some quantitative detail to the anal-
ysis of the point sets generated by our subdivision op-
erator, we compute the mean and the standard devia-
tion of the distance from each point in the set to its
closest neighbor(s) for the subdivided point setsP1 and
P2. For eachx in the point setP ⊂ S, let sdk(x) de-
note the distance fromx to its kth closest neighbour.
As an indicator for the uniformity of the density of a
point setP (at level k), we use, for a positive integer
k, ρ(k) = minP sdk(x)

maxP sdk(x)
. Sinceρ(k) represents an absolute

measure it may be too sensitive, therefore we compute

insteadρ̂(k) = mean(sdk)−std(sdk)
mean(sdk)+std(sdk)

, where mean and std

stand for the mean and standard deviation over the point
set, respectively.

The histograms ofsd1(x) corresponding to the two
sets of points are given in Figure 6. Note in Table 1
that the values of̂ρ(k) (for 1 ≤ k ≤ 10) are quite close
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Model\ k 1 2 3 4 5
P1 0.807 0.832 0.832 0.821 0.788
P2 0.781 0.815 0.823 0.804 0.785

6 7 8 9 10
P1 0.809 0.8132 0.786 0.818 0.828
P2 0.799 0.798 0.784 0.81 0.822

Table 1: Values ofρ̂(k) for P1 and P2 and with k ∈
{1,2, . . . ,10}.

to 1 therefore indicating small dispersion up to the 10th
closest neighbor.

Finally, in Figure 8 we present examples dealing
with more complicated geometry. These results were
produced by using the projected Euclidean centroidg0

(Section 4.4) andk nearest neighbourhoods. It is easy
to prove that the use ofk nearest neighbourhoods re-
sults in non-uniform point distributions even if starting
from a uniform sampling such as the one produced by
the technique discussed in Section 4.1. We are currently
introducing the back propagation flow to produce the
true geodesic centroidgBM from g0, and are changing
the neighbourhood rule. This yields a more uniform
point distribution and corresponding examples will be
reported elsewhere. Note that for the processing of the
spherical geometry, we usegBM and the neighbourhood
is completely intrinsic.

6 Conclusion

In this paper, we introduced the concept of meshless,
or point cloud, subdivision. Apart from the introduc-
tion of this paradigm, we presented a particular mesh-
less subdivision scheme based on the computation of
intrinsic centroids for point clouds. We implemented
and showed the applicability of this technique with the
help of a new method for the computation of geodesic
centroids on manifold surfaces.

The consideration of local proximity instead of mesh
connectivity information makes meshless subdivision
attractive for the processing of point clouds represent-
ing higher-dimensional surfaces. By operating directly
across the point cloud, problems associated with the
complexity of the topological subdivision of higher-
dimensional meshes are avoided. Meshless subdivision
operators may be devised for this type of input data
which upsample the point-sampled geometry more con-
servatively than the operator suggested in this paper. In
this direction, we are considering introducing adaptive
neighbourhoods based on curvature estimators such as
those reported in [CP03, MN03]. We leave this to fu-
ture work.

As regards future work on the theoretical analysis
of our meshless intrinsic subdivision scheme, Wallner

and Dyn [WD03, WD04] show the convergence and
smoothness of non-linear geodesic curve subdivision by
proximity to a corresponding linear extrinsic subdivi-
sion scheme. Since our meshless subdivision scheme
operates inside a small Euclidean offset band around the
point cloud throughout, following [MS01, MS03], we
intend to exploit this idea in a surface context to anal-
yse the convergence and continuity of intrinsic meshless
subdivision schemes.
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Figure 7: The base point set,P0, of 2144 points acquired from the unit sphere (left), is subdivided recursively
using both our meshless subdivision operator (bottom) and Loop subdivision (top). The triangular base
mesh generated fromP0 for the support of Loop subdivision is shown on the left. The subdivided point
setsP1 (8570 points) andP2 (34275 points) are shown in the center and on the right respectively. The
corresponding reconstructed surfaces are given next to each point set. Both these surfaces and the base
mesh were computed with the help of public domain software [Par]. (This figure is best seen on-screen.)

Figure 8: Example for the meshless geometric subdivision of more elaborate geometry in form of the Venus data
set. The base point set is displayed on the left, the result obtained after two iterations of meshless
geometric subdivision is shown on the right. See text for details on the steps for the production of these
results and comments on the slightly non-uniform distribution of the subdivided point sets. All surfaces
were reconstructed with the help of public domain software [Par].
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